منتدى التفوق والابداع

السلام عليكم 99211627

انضم إلى المنتدى ، فالأمر سريع وسهل

منتدى التفوق والابداع

السلام عليكم 99211627

منتدى التفوق والابداع

هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

2 مشترك

    السلام عليكم

    منى
    منى
    مبدع جديد
    مبدع جديد


    السلام عليكم Ooooo-10
    السلام عليكم Studen10
    انثى السلام عليكم 8vuutv
    عدد المساهمات : 9
    الموقع : عالم الرياضيات
    محترم لقوانين المنتدى
    [/img]C:Documents and SettingsAdministrateurBureau

    السلام عليكم Empty السلام عليكم

    مُساهمة من طرف منى الخميس ديسمبر 23, 2010 6:23 pm

    ممكن احد يترجم
    ارجوك ارجوك ارجوك ارجوك ارجوك
    منى
    منى
    مبدع جديد
    مبدع جديد


    السلام عليكم Ooooo-10
    السلام عليكم Studen10
    انثى السلام عليكم 8vuutv
    عدد المساهمات : 9
    الموقع : عالم الرياضيات
    محترم لقوانين المنتدى
    [/img]C:Documents and SettingsAdministrateurBureau

    السلام عليكم Empty رد: السلام عليكم

    مُساهمة من طرف منى الخميس ديسمبر 23, 2010 6:25 pm

    The point of this "footnote" is to prove the following theorem which we use on our page about Mersenne primes and the historical note "the Largest Known Prime by Year". Fermat discovered and use the first part of this theorem (p = 1 modulo q) and Euler discovered the second.
    Theorem.
    Let p and q be odd primes. If p divides Mq, then p = 1 (mod q) and p = +/-1 (mod Cool.
    Below we give a proof and an example.
    Proof.
    If p divides Mq, then 2q = 1 (mod p) and the order of 2 (mod p) divides the prime q, so it must be q. By Fermat's Little Theorem the order of 2 also divides p-1, so p-1 = 2kq. This gives
    2(p-1)/2 = 2qk = 1 (mod p)
    so 2 is a quadratic residue mod p and it follows p = +/-1 (mod Cool, which completes the proof.
    Example: Suppose p divides M31, then the two parts of the theorem together show p = 1 or 63 (mod 248). By 1772 Euler had used this to show M31 was prime.

    البرهان الاول

    البرهان الثاني
    The point of this "footnote" is to prove the following theorem stated by Euler in 1750 and proved by Lagrange in 1775. We use this theorem on our page about Mersenne primes.
    Theorem.
    Let p = 3 (mod 4) be prime. 2p+1 is also prime if and only if 2p+1 divides Mp.
    Proof.
    Suppose q = 2p+1 is prime. q = 7 (mod Cool so 2 is a quadratic residue modulo q and it follows that there is an integer n such that n2 = 2 (mod q). This shows
    2p = 2(q-1)/2 = nq-1 = 1 (mod q),
    showing q divides Mp.
    Conversely, let 2p+1 be a factor of Mp. Suppose, for proof by contradiction, that 2p+1 is composite and let q be its least prime factor. Then 2p = 1 (mod q) and the order of 2 modulo q divides both p and q-1, hence p divides q-1. This shows q > p and it follows
    (2p+1) + 1 > q2 > p2
    which is a contradiction since p > 2.
    Note.
    This means that if p = 3 (mod 4) and 2p+1 are both prime, then either p is 3 or Mp is composite.

    البرهان الثالث
    To test for divisibility by three (or nine), we often sum the digits and test the resulting sum. If the resulting sum has several digits, then sum again. Edwin O'Sullivan pointed that if we repeatedly sum the digits of an even perfect number (other than six), we always get one. Conrad Curry later poined out that this result can be found in [Gardner68].
    Theorem.
    If you sum the digits of any even perfect number (except 6), then sum the digits of the resulting number, and repeat this process until you get a single digit, that digit will be one.

    Examples.
    28  10  1, 496  19  10  1, and 8128  19  10  1

    Proof.
    Let s(n) be the sum of the digits of n. It is easy to see that s(n) = n (mod 9). So to prove the theorem, we need only show that perfect numbers are congruent to one modulo nine. If n is a perfect number, then n has the form 2p-1(2p-1) where p is prime (see theorem one). So p is either 2, 3, or is congruent to 1 or 5 modulo 6. Note that we have excluded the case p=2 (n=6). Finally, modulo nine, the powers of 2 repeat with period 6 (that is, 26 = 1 (mod 9)), so modulo nine n is congruent to one of the three numbers 21-1(21-1), 23-1(23-1), or 25-1(25-1), which are all 1 (mod 9).

    منى
    منى
    مبدع جديد
    مبدع جديد


    السلام عليكم Ooooo-10
    السلام عليكم Studen10
    انثى السلام عليكم 8vuutv
    عدد المساهمات : 9
    الموقع : عالم الرياضيات
    محترم لقوانين المنتدى
    [/img]C:Documents and SettingsAdministrateurBureau

    السلام عليكم Empty رد: السلام عليكم

    مُساهمة من طرف منى الخميس ديسمبر 23, 2010 6:36 pm

    The point of this "footnote" is to prove the following theorem which we use on our page about Mersenne primes and the historical note "the Largest Known Prime by Year". Fermat discovered and use the first part of this theorem (p = 1 modulo q) and Euler discovered the second.
    Theorem.
    Let p and q be odd primes. If p divides Mq, then p = 1 (mod q) and p = +/-1 (mod Cool.
    Below we give a proof and an example.
    Proof.
    If p divides Mq, then 2q = 1 (mod p) and the order of 2 (mod p) divides the prime q, so it must be q. By Fermat's Little Theorem the order of 2 also divides p-1, so p-1 = 2kq. This gives
    2(p-1)/2 = 2qk = 1 (mod p)
    so 2 is a quadratic residue mod p and it follows p = +/-1 (mod Cool, which completes the proof.
    Example: Suppose p divides M31, then the two parts of the theorem together show p = 1 or 63 (mod 248). By 1772 Euler had used this to show M31 was prime.

    البرهان الاول

    البرهان الثاني
    The point of this "footnote" is to prove the following theorem stated by Euler in 1750 and proved by Lagrange in 1775. We use this theorem on our page about Mersenne primes.
    Theorem.
    Let p = 3 (mod 4) be prime. 2p+1 is also prime if and only if 2p+1 divides Mp.
    Proof.
    Suppose q = 2p+1 is prime. q = 7 (mod Cool so 2 is a quadratic residue modulo q and it follows that there is an integer n such that n2 = 2 (mod q). This shows
    2p = 2(q-1)/2 = nq-1 = 1 (mod q),
    showing q divides Mp.
    Conversely, let 2p+1 be a factor of Mp. Suppose, for proof by contradiction, that 2p+1 is composite and let q be its least prime factor. Then 2p = 1 (mod q) and the order of 2 modulo q divides both p and q-1, hence p divides q-1. This shows q > p and it follows
    (2p+1) + 1 > q2 > p2
    which is a contradiction since p > 2.
    Note.
    This means that if p = 3 (mod 4) and 2p+1 are both prime, then either p is 3 or Mp is composite.

    البرهان الثالث
    To test for divisibility by three (or nine), we often sum the digits and test the resulting sum. If the resulting sum has several digits, then sum again. Edwin O'Sullivan pointed that if we repeatedly sum the digits of an even perfect number (other than six), we always get one. Conrad Curry later poined out that this result can be found in [Gardner68].
    Theorem.
    If you sum the digits of any even perfect number (except 6), then sum the digits of the resulting number, and repeat this process until you get a single digit, that digit will be one.

    Examples.
    28  10  1, 496  19  10  1, and 8128  19  10  1

    Proof.
    Let s(n) be the sum of the digits of n. It is easy to see that s(n) = n (mod 9). So to prove the theorem, we need only show that perfect numbers are congruent to one modulo nine. If n is a perfect number, then n has the form 2p-1(2p-1) where p is prime (see theorem one). So p is either 2, 3, or is congruent to 1 or 5 modulo 6. Note that we have excluded the case p=2 (n=6). Finally, modulo nine, the powers of 2 repeat with period 6 (that is, 26 = 1 (mod 9)), so modulo nine n is congruent to one of the three numbers 21-1(21-1), 23-1(23-1), or 25-1(25-1), which are all 1 (mod 9).

    منى
    منى
    مبدع جديد
    مبدع جديد


    السلام عليكم Ooooo-10
    السلام عليكم Studen10
    انثى السلام عليكم 8vuutv
    عدد المساهمات : 9
    الموقع : عالم الرياضيات
    محترم لقوانين المنتدى
    [/img]C:Documents and SettingsAdministrateurBureau

    السلام عليكم Empty رد: السلام عليكم

    مُساهمة من طرف منى الخميس ديسمبر 23, 2010 6:42 pm

    لم أفهم الموضوع لم يظهر وكدالك الردود
    منى
    منى
    مبدع جديد
    مبدع جديد


    السلام عليكم Ooooo-10
    السلام عليكم Studen10
    انثى السلام عليكم 8vuutv
    عدد المساهمات : 9
    الموقع : عالم الرياضيات
    محترم لقوانين المنتدى
    [/img]C:Documents and SettingsAdministrateurBureau

    السلام عليكم Empty السلام عليكم

    مُساهمة من طرف منى الخميس ديسمبر 23, 2010 6:46 pm

    The point of this "footnote" is to prove the following theorem which we use on our page about Mersenne primes and the historical note "the Largest Known Prime by Year". Fermat discovered and use the first part of this theorem (p = 1 modulo q) and Euler discovered the second.
    Theorem.
    Let p and q be odd primes. If p divides Mq, then p = 1 (mod q) and p = +/-1 (mod Cool.
    Below we give a proof and an example.
    Proof.
    If p divides Mq, then 2q = 1 (mod p) and the order of 2 (mod p) divides the prime q, so it must be q. By Fermat's Little Theorem the order of 2 also divides p-1, so p-1 = 2kq. This gives
    2(p-1)/2 = 2qk = 1 (mod p)
    so 2 is a quadratic residue mod p and it follows p = +/-1 (mod Cool, which completes the proof.
    Example: Suppose p divides M31, then the two parts of the theorem together show p = 1 or 63 (mod 248). By 1772 Euler had used this to show M31 was prime.

    البرهان الاول

    البرهان الثاني
    The point of this "footnote" is to prove the following theorem stated by Euler in 1750 and proved by Lagrange in 1775. We use this theorem on our page about Mersenne primes.
    Theorem.
    Let p = 3 (mod 4) be prime. 2p+1 is also prime if and only if 2p+1 divides Mp.
    Proof.
    Suppose q = 2p+1 is prime. q = 7 (mod Cool so 2 is a quadratic residue modulo q and it follows that there is an integer n such that n2 = 2 (mod q). This shows
    2p = 2(q-1)/2 = nq-1 = 1 (mod q),
    showing q divides Mp.
    Conversely, let 2p+1 be a factor of Mp. Suppose, for proof by contradiction, that 2p+1 is composite and let q be its least prime factor. Then 2p = 1 (mod q) and the order of 2 modulo q divides both p and q-1, hence p divides q-1. This shows q > p and it follows
    (2p+1) + 1 > q2 > p2
    which is a contradiction since p > 2.
    Note.
    This means that if p = 3 (mod 4) and 2p+1 are both prime, then either p is 3 or Mp is composite.

    البرهان الثالث
    To test for divisibility by three (or nine), we often sum the digits and test the resulting sum. If the resulting sum has several digits, then sum again. Edwin O'Sullivan pointed that if we repeatedly sum the digits of an even perfect number (other than six), we always get one. Conrad Curry later poined out that this result can be found in [Gardner68].
    Theorem.
    If you sum the digits of any even perfect number (except 6), then sum the digits of the resulting number, and repeat this process until you get a single digit, that digit will be one.

    Examples.
    28  10  1, 496  19  10  1, and 8128  19  10  1

    Proof.
    Let s(n) be the sum of the digits of n. It is easy to see that s(n) = n (mod 9). So to prove the theorem, we need only show that perfect numbers are congruent to one modulo nine. If n is a perfect number, then n has the form 2p-1(2p-1) where p is prime (see theorem one). So p is either 2, 3, or is congruent to 1 or 5 modulo 6. Note that we have excluded the case p=2 (n=6). Finally, modulo nine, the powers of 2 repeat with period 6 (that is, 26 = 1 (mod 9)), so modulo nine n is congruent to one of the three numbers 21-1(21-1), 23-1(23-1), or 25-1(25-1), which are all 1 (mod 9).

    bounce bounce bounce bounce cheers
    a.a.h.n.a.m
    a.a.h.n.a.m
    مشرف قسم
    مشرف قسم


    السلام عليكم Ooooo-10
    رقم عضوية : 3
    السلام عليكم Studen10
    ذكر السلام عليكم 492788507
    عدد المساهمات : 622
    العمر : 28
    الموقع : shalthamneh.b7ar.org
    محترم لقوانين المنتدى

    السلام عليكم Empty رد: السلام عليكم

    مُساهمة من طرف a.a.h.n.a.m الجمعة ديسمبر 24, 2010 7:25 pm

    اختي فوتي على ترجمة غوغل في راس الصفحة
    ننتظر جديد ابداعاتك

      الوقت/التاريخ الآن هو الأحد مايو 19, 2024 9:55 am